Search results for "ELECTRONIC EXCITATIONS"

showing 4 items of 4 documents

Time-dependent density-functional theory in the projector augmented-wave method

2008

We present the implementation of the time-dependent density-functional theory both in linear-response and in time-propagation formalisms using the projector augmented-wave method in real-space grids. The two technically very different methods are compared in the linear-response regime where we found perfect agreement in the calculated photoabsorption spectra. We discuss the strengths and weaknesses of the two methods as well as their convergence properties. We demonstrate different applications of the methods by calculating excitation energies and excited state Born–Oppenheimer potential surfaces for a set of atoms and molecules with the linear-response method and by calculating nonlinear e…

ELECTRONIC EXCITATIONStime propagationGeneral Physics and AstronomySpectral linelaw.inventionlinear responseATOMSlawQuantum mechanicsSPECTRAPhysical and Theoretical ChemistryEXCHANGEEQUATIONSPhysicsREAL-TIMEPhysicsAtoms in moleculesTime-dependent density functional theorytime-dependent density-functional theoryNonlinear systemProjectorRESPONSE THEORYphotoabsorptionExcited statenon-linear responseProjector augmented wave methodDensity functional theoryCLUSTERSAPPROXIMATION
researchProduct

Many-body perturbation theory calculations using the yambo code

2019

Abstract yambo is an open source project aimed at studying excited state properties of condensed matter systems from first principles using many-body methods. As input, yambo requires ground state electronic structure data as computed by density functional theory codes such as Quantum ESPRESSO and Abinit. yambo’s capabilities include the calculation of linear response quantities (both independent-particle and including electron–hole interactions), quasi-particle corrections based on the GW formalism, optical absorption, and other spectroscopic quantities. Here we describe recent developments ranging from the inclusion of important but oft-neglected physical effects such as electron–phonon i…

BETHE-SALPETER EQUATION02 engineering and technology01 natural sciencesSoftwarereal-time dynamicsGeneral Materials Sciencequasi-particleCondensed Matter - Materials Scienceparallelismelectron-phononreal-time dynamicComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologySupercomputerMANY-BODY PERTURBATION THEORYCondensed Matter Physicsbethe-salpeter-equationoptical-propertiesoptical propertietemperature-dependence[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]User interface0210 nano-technologyGround statePhysics - Computational Physicsoptical propertiesmonte-carloMaterials scienceExploitFOS: Physical sciencesabinitSettore FIS/03 - Fisica della MateriaComputational scienceKerr effect0103 physical scienceskerr effect010306 general physicselectronic excitationsTHEORETICAL SPECTROSCOPYpolarizationspin and spinorsbusiness.industrysoftwareMaterials Science (cond-mat.mtrl-sci)Rangingelectronic structureABINITInterfacingelectron-phonon; electronic structure; Kerr effect; optical properties; parallelism; real-time dynamics; spin and spinorsbusinessabsorption
researchProduct

Electronic excitations in ZnWO4 and ZnxNi1−x WO4 (x = 0.1 − 0.9) using VUV synchrotron radiation

2011

The photoluminescence spectra and luminescence excitation spectra of pure microcrystalline and nano-sized ZnWO4 as well as the Zn x Ni1−x WO4 solid solutions were studied using vacuum ultraviolet (VUV) synchrotron radiation. The samples were also characterized by x-ray powder diffraction. We found that: (i) the shape of the photoluminescence band at 2.5 eV, being due to radiative electron transitions within the [WO6]6− anions, becomes modulated by the optical absorption of Ni2+ ions in the Zn x Ni1−x WO4 solid solutions; and (ii) no significant change in the excitation spectra of Zn0.9Ni0.1WO4 is observed compared to pure ZnWO4. At the same time, a shift of the excitonic bands to smaller en…

Materials sciencePhotoluminescenceQC1-999General Physics and AstronomySynchrotron radiation02 engineering and technology01 natural sciencesSpectral lineCondensed Matter::Materials Scienceznxni1−x wo4 solid solutions0103 physical sciencesluminescencePhotoluminescence excitationelectronic excitations010302 applied physicsPhysicsznwo4021001 nanoscience & nanotechnologyAtomic electron transitionvuv spectroscopyAtomic physics0210 nano-technologyLuminescenceExcitationPowder diffractiontungstatesOpen Physics
researchProduct

Energy Transport in SiO2 Crystals: Luminescence Excitation Spectra of Stishovite and α-Quartz

2022

The financial support of the Latvian Science Council Grant No lzp-2021/1-0215 and the funding of the University of Latvia as the Centre of Excellence within the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2, are greatly acknowledged.

stishovite single crystalphotoluminescence excitation:NATURAL SCIENCES::Physics [Research Subject Categories]Electronic excitations migrationLatvian Journal of Physics and Technical Sciences
researchProduct